Nexxo-Prep RNA mini

RNA extraction, by spin-column system, for the isolation of up to 100 μ g total RNA from cell cultures (max. 1.10⁷ cells), tissues (max. 20 mg), paraffin-embedded tissues or blood (max. 1.50 ml). Eluted RNA is ready for down-stream applications and can directly be used for Northern blots, dot blots, RT-PCR, DDRT-PCR, construction of cDNA libraries or can be stored for future use.

Note: this kit has not been validated for the extraction of viral RNA and has not been tested for the isolation from serum or plasma.

I. Kit components

	10 preps	50 preps	250 preps
Tampon d'élution KL (Elution Buffer KL)	2 ml	15 ml	30 ml
Tampon de Iyse LT (Lysis Buffer LT)	10 ml	50 ml	250 ml
Tampon R1 (Buffer R1)	30 ml	30 ml	4 x 30 ml
Solution de lavage M1 (Wash Solution M1)	15 ml (ready-to-use)	20 ml (final volume: 40 ml)	80 ml (final volume: 160 ml)
Solution de lavage M2 (Wash Solution M2)	15 ml (ready-to-use)	2 x 12 ml (final volume: 2 x 60 ml)	2 x 40 ml (final volume: 2 x 200 ml)
Billes Z1 (Beads Z1)	1	1	5
Billes Z2 (Beads Z2)	1	1	5
Kit Filtres ARN (RNA Filter Set)	10	50	5 x 50
Filtres ADN (DNA Filter)	10	50	5 x 50
Tubes receveurs 2,0 ml (2,0 ml Receiver Tubes)	20	2 x 50	10 x 50
Tubes receveurs GS (Receiver Tubes GS)	10	50	5 x 50
Tubes d'élution (Elution Tubes)	10	50	5 x 50
User guide	1	1	1
Art. No.	2034.10	2034.50	2034.250

Required material and equipment not included in this kit

- 1M DTT
- Ethanol >96 %
- Ethanol >70 %
- Octane/xylene, proteinase K, TE buffer (only for isolation from FFPE tissue material)
- Tubes for erythrocytes lysis (e.g. 15 ml Falcon)
- Microcentrifuge (min 11000 x g)
- Refrigerated centrifuge (only for isolation from blood samples)
- Pipettes with corresponding tips (RNase-free, sterile)
- Disposable gloves
- Bottle (1 liter)

Some components are delivered in concentrated form and have to be diluted appropriately (see chapter « Reagents and buffer solutions preparation », page 2).

II. Storage and stability

All kit components, except diluted **Buffer R1**, should be stored at room temperature (15-30 °C).

- Store diluted Buffer R1 at +4 °C.
- This kit needs a 1M DTT solution (not included). DTT is very instable in solution. It is recommended to <u>store 1M DTT solution at</u> <u>-20 °C.</u>

Note: do not repeat freeze-thaw cycles of 1M DTT solution. Make aliquots if necessary.

By following these recommendation, 1M DTT is stable for 12 months.

Note: all kit components are stable for at least 12 months.

III. Reagents and buffer solutions preparation

Not: 1M DTT can be replaced by 1M $\beta\text{-}$ mercaptoethanol.

Ethanol is a volatile compound. Keep **Wash Solution M1** and **Wash Solution M2** tightly closed.

Bring all components to room temperature (15-30°C) and check solutions for absence of precipitates before use. Redisolve precipitates by heating (< 30 °C).

Prepare the buffers and solutions with RNase-free ddH₂O (DEPC treated)

- 1. Kit 10 extractions:
- Transfer the concentrated Buffer R1 (30 ml) into a bottle containing 970 ml of H₂O. Annotate the bottle ("Diluted Buffer R1" + "Date") and store at +4 °C.

Note: this kit needs a 1M DTT solution (not included). DTT is very instable in solution. It is preferable to prepare a new solution for each use.

It is however possible to prepare a stock of 1M DTT aliquots, and store them as described in chapter "Storage and stability" page 2.

Note: 1M DTT can be replaced by 1M β -mercaptoethanol.

Note: in the 10 extractions kit Wash Solution M1 and Wash Solution M2 are ready-to-use.

2. Kit 50 extractions:

- Transfer the concentrated **Buffer R1** (30 ml) into a bottle containing 970 ml of H₂O. Annotate the bottle ("**Diluted Buffer R1**" + "**Date**") and store at +4 °C.
- Add 20 ml of >96 % ethanol to the Wash Solution M1. Mix and store the bottle tightly closed.
- Add 48 ml of >96 % ethanol to each Wash Solution M2. Mix and store the bottle tightly closed.

Note: this kit needs a 1M DTT solution (not included). DTT is very instable in solution. It is preferable to prepare a new solution for each use.

It is however possible to prepare a stock of 1M DTT aliquots, and store them as described in chapter "Storage and stability" page 2.

Note: 1M DTT can be replaced by 1M β -mercaptoethanol.

3. Kit 250 extractions:

- Transfer each concentrated Buffer R1 (30 ml) into a bottle containing 970 ml of H₂O. Annotate the 4 bottles ("Diluted Buffer R1" + "Date") and store at +4 °C.
- Add 80 ml of >96 % ethanol to the Wash Solution M1. Mix and store the bottle tightly closed.
- Add 160 ml of >96 % ethanol to each **Wash Solution M2**. Mix and store the bottle tightly closed.

Note: this kit needs a 1M DTT solution (not included). DTT is very instable in solution. It is preferable to prepare a new solution for each use. It is however possible to prepare a stock of 1M DTT aliquots, and store them as described in chapter "Storage and stability" page 2.

Note: 1M DTT can be replaced by 1M β -mercaptoethanol.

IV. Protocol 1: RNA isolation from cell culture (up to 1.10⁷ cells)

Before starting

- Ensure that reagents/buffers preparation has been done (see chapter "Reagents and buffer solutions preparation", page 2).
- The last step needs to place the elution tube in ice. Prepare the ice in due time.

Note: always use RNase-free consumables.

Note: 1M DTT can be replaced by 1M β -mercaptoethanol.

• Supplement the required amount of Lysis Buffer LT with 1M DTT at 1 % of final volume. (see step 1c or 2)

e.g. : <u>693 µl</u> Lysis Buffer LT + <u>7 µl</u> DTT 1M = <u>700 µl</u> Lysis Buffer LT supplemented with DTT

> Note: the mix Lysis buffer + DTT is instable over time, only prepare the required amounts for the protocol.

> Note: **Lysis Buffer LT** contents DNA binding particles. Shake <u>gently before use</u>, to re-suspend the particles. Wait until foam disappearance.

Note: To prevent contamination, use new pipet tip for each pipetting step.

Depending on sample characteristics start with step 1a, 1b or 1c:

- > 1a: for cell suspensions.
- > 1b: for monolayer cells, excepted monolayers on 6 96 well plates, on dishes ≤ Ø 35 mm or on flasks ≤ 12.5 cm². (max. 1 x 10⁷ cells)
- ▶ 1c: for monolayer cells on 6 96 well plates or on dishes $\leq \emptyset$ 35 mm or on flasks \leq 12.5 cm².

12	Cell harvesting, from a cell suspension	1h	Cell ha
Та	 Centrifuge 5 min at 240 x g, the cell culture containing up to 1.10⁷ cells. 	ID	•
	 Discard carefully (without disturbing the pellet) the supernatant and the whole culture media 		•
	Proceed with step 2 «Cell lysis»		

Cell harvesting, from a monolayer cell culture
 Detach adherent cells by

• Transfer the cells into a centrifuge tube

trypsinization

- Centrifuge 5 min at 240 x g
- Discard carefully (without disturbing the pellet) the whole supernatant
- Proceed with step 2 «Cell lysis»

Steps 1c to 7 \rightarrow

1c	Cell harvesting <u>and cell lysis</u> , from a monolayer cell culture		
IC	Discard the whole cell culture media		
	 Add directly the required amount(*) of DTT supplemented Lysis Buffer LT (shake gently before use) to the cell monolayer 		
	(*) Monolayer on 12, 24 and 96 well plates: 350 µl of DTT supplemented Lysis Buffer LT .		
	Monolayer on 6 well plates, on \varnothing 35 mm dishes or 12.5 cm ² flasks: 700 µl of DTT supplemented Lysis Buffer LT .		
	Collect the cell lysate with a cell scraper		
	 Transfer, with a pipette, the lysate into a reaction tube (not supplied) 		
	 Mix entirely by pipetting (any pellets or cell clumps should remain) 		
	 Proceed with step 3 « DNA elimination » 		

	Cell lysis		
2	Detach the cell pellet by flicking the tube		
	 Add the required amount(*) of DTT supplemented Lysis Buffer LT (shake gently before use) 		
	(*) Pellet with less than 5 x 10 ⁶ cells : 350 μl of DTT supplemented Lysis Buffer LT .		
	Pellet with 5 x 10 ⁶ to 1 x 10 ⁷ cells: 700 µl of DTT supplemented Lysis Buffer LT .		
	 Mix entirely by pipetting (any pellets or cell clumps should remain) 		

Note: passing the lysate through a gauge 20 needle improves the RNA extraction yield. (Shearing occurs and DNA breaks down).

DNA elimination

3

- Insert a DNA Filter into a 2,0 ml
 Receiver Tube (with lid)
 - Transfer the lysate from step 1c or 2 (as the case may be) into the **DNA Filter**
 - Incubate 1 min. at room temperature
 - Centrifuge 2 min. at 11000 x g
 - Discard the DNA Filter

Note: keep the DNA Filter if the DNA extraction is also intended.

RNA	RNA adsorption to the RNA Filter	
	 Add the required amount(*) of ethanol (70 %) to the flow- through 	
 (*) Less than 5 x 10⁶ cells: 250 μl of ethanol (70 %). From 5 x 10⁶ to 1 x 10⁷ cells: 500 μl of ethanol (70 %). 		
	• Transfer the mixture into a RNA Filter set (RNA filter in his receiver tube GS)	
	 Incubate 1 min. at room temperature 	
	• Centrifuge 1 min. at 11000 x g	
	 Discard the flow-through and put the RNA Filter back into the Receiver Tube GS 	
Note µI, ce mixte	e: if the samples volume exceeds 700 entrifuge the flow-through + ethanol ure by successive steps.	

Steps 5 to 7 \rightarrow

	RNA washing, step I	
5	•	Add 600 µl of Wash Solution M1 to the RNA Filter
	•	Centrifuge 1 min. at 11000 x g
	•	Discard the flow-through <u>and the</u> <u>Receiver tube</u>
	•	Insert the RNA Filter into a <u>new</u> Receiver Tube GS

RNA washing, step II 6 Add 700 µl of Wash Solution . M2 to the RNA Filter Centrifuge 1 min. at 11000 x g Discard the flow-through and put the RNA Filter back into the **Receiver Tube GS** Repeat 1 X the washingcentrifugation step Discard the flow-through and put the RNA Filter back into the **Receiver Tube GS** Centrifuge 4 min. at max. speed, to remove remaining ethanol

Elution of total RNA

7

- Insert the **RNA Filter** into a RNase-free **Elution Tube**
 - Add 40 100 µl of Elution Buffer KL (depending on desired yield and concentration)
 - Incubate 2 min. at room temperature
 - Centrifuge 1 min. at 11000 x g
 - Discard the RNA Filter and place immediately the Elution Tube with eluted RNA on ice

Eluted RNA is ready for down-stream applications and can directly be used for Northern blots, dot blots, RT-PCR, DDRT-PCR, construction of cDNA libraries, etc., or can be stored at -80 °C for several weeks.

 V. Protocol 2: RNA extraction from whole blood (0.5 – 1.5 ml, <1.10⁷ leukocytes)

Before starting

- Ensure that reagents/buffers preparation has been done (see chapter "Reagents and buffer solutions preparation", page 2).
- The first and the last step needs to place the tube in ice. Prepare the ice in due time.
- The first step needs **Diluted Buffer R1** refrigerated at 4 °C
- The first step needs a refrigerated centrifuge (4 °C)

Note: always use RNase-free consumables.

Note: 1M DTT can be replaced by 1M β -mercaptoethanol.

Note: To prevent contamination, use new pipet tip for each pipetting step.

• Supplement the required amount of Lysis Buffer LT with 1M DTT at 1 % of final volume. (see step 2)

e.g. : <u>693 µl</u> **Lysis Buffer LT** + <u>7 µl</u> DTT 1M = <u>700 µl</u> **Lysis Buffer LT** supplemented with DTT

> Note: the mix Lysis buffer + DTT is instable over time, only prepare the required amounts for the protocol.

> Note: **Lysis Buffer LT** contents DNA binding particles. Shake <u>gently before use</u>, to re-suspend the particles. Wait until foam disappearance.

	Leukocytes concentration		DNA
1	 Homogenize the sample by inverting carefully (min. 15 to 20 inversions) 	3	
	 Transfer 0.5 - 1.5 ml of the sample into a 15 ml tube (not supplied) and add 10 ml of refrigerated (4 °C) Diluted Buffer R1 		
	 Mix briefly, but entirely, by inverting 		
	 Incubate 15 - 20 min. in ice and mix briefly, during incubation, by inverting 2 times 		
	<i>Note: for fresh blood (< 3 hours) increase the incubation time to 45 min.</i>		
	 Centrifuge 5 min., at 4 °C, at 960 x g 		
	 Remove delicately the supernatant (retain only the pellet) 		
	 Add 5 ml of refrigerated (4 °C) Diluted Buffer R1 to the pellet 		RNA
	 Mix by snipping the tube with the finger 	4	suco
	 Centrifuge 5 min., at 4 °C, at 960 x g 		
	 Remove the whole supernatant (red interface included), and retain only the small white pellet 		

	Nucleic acids extraction
2	 Add 900 µl of DTT supplemented Lysis Buffer LT (shake gently before use)
	 Mix by pipetting until pellet is entirely resuspended (any pellets or cell clumps should remain)
	Note: gelatinous looking particles from DNA/ Lysis Buffer LT interaction, are not to dissolve.

DNA elimination

- Transfer the solution from step 2 into a 2.0 ml receiver tube
 - Vortex 10 sec.
 - Incubate 5 min. at room temperature and vortex 3 – 5 times during incubation
 - Centrifuge 1 min. at 11000 x g
 - Transfer the supernatant into a new 2.0 ml receiver tube. Do not transfer the pellet, gelatinous parts or mineral particles
 - Add 750 µl of >96 % ethanol to the tube containing the supernatant

Au tube

Mix by pipetting

RNA adsorption to the RNA Filter, by successive steps

- Transfer the first 800 µl of the solution from the previous step (supernatant + ethanol), into the center of a RNA Filter (filter inserted in new tube)
- Incubate 1 min. at room temperature
- Centrifuge 1 min. at 11000 x g
- Discard the flow-through and put the **RNA Filter** back into the tube
- Transfer the leftover of the solution from step 3 (supernatant + ethanol) into the center of the RNA Filter
- Incubate 1 min. at room temperature
- Centrifuge 1 min. at 11000 x g
- Discard the flow-through and put the RNA Filter back into the tube

	RNA washing, step I	
5	•	Add 600 µl of Wash Solution M1 to the RNA Filter
	•	Centrifuge 1 min. at 11000 x g
	•	Discard the flow-through <u>and the</u> <u>Receiver tube</u>
	•	Insert the RNA Filter into a <u>new</u> Receiver Tube GS

RNA washing, step II 6 Add 700 µl of Wash Solution • M2 to the RNA Filter Centrifuge 1 min. at 11000 x g Discard the flow-through and put the RNA Filter back into the **Receiver Tube GS** Repeat 1 X the washingcentrifugation step Discard the flow-through and put the RNA Filter back into the Receiver Tube GS Centrifuge 4 min. at max. speed, to remove remaining ethanol

Elution of total RNA

7

- Insert the **RNA Filter** into a RNase-free **Elution Tube**
 - Add 30 60 µl of Elution Buffer KL (depending on desired yield and concentration)
 - Incubate 2 min. at room temperature
 - Centrifuge 1 min. at 11000 x g
 - Discard the RNA Filter and place immediately the Elution Tube with eluted RNA on ice

Eluted RNA is ready for down-stream applications and can directly be used for Northern blots, dot blots, RT-PCR, DDRT-PCR, construction of cDNA libraries, etc., or can be stored at -80 °C for several weeks.

Note: RNA elution can also be achieved with RNase-free ddH_2O .

Note: for RNA extraction from a buffy coat pellet obtained by centrifugation, start directly from step 2 "**Nucleic acids extraction**" (pellet must be entirely free from supernatant).

VI. Protocol 3: RNA extraction from up to 20 mg tissue

Before starting

- Ensure that reagents/buffers preparation has been done (see chapter "Reagents and buffer solutions preparation", page 2).
- The last step needs to place the elution tube in ice. Prepare the ice in due time.

Note: always use RNase-free consumables.

Note: 1M DTT can be replaced by 1M β -mercaptoethanol.

 Supplement the required amount of Lysis Buffer LT with 1M DTT at 1 % of final volume. (see step 1a or 1b)

e.g. : <u>693 µl</u> **Lysis Buffer LT** + <u>7 µl</u> DTT 1M = <u>700 µl</u> **Lysis Buffer LT** supplemented with DTT

> Note: the mix Lysis buffer + DTT is instable over time, only prepare the required amounts for the protocol.

> Note: **Lysis Buffer LT** contents DNA binding particles. Shake <u>gently before use</u>, to re-suspend the particles. Wait until foam disappearance.

Note: To prevent contamination, use new pipet tip for each pipetting step.

Depending on sample characteristics, manual (1a) <u>or</u> automated (1b) grinding approach is more appropriated

	Automated sample grinding
1a	• Transfer the sample in a suitable container (not supplied) adapted for grinding with a vortex, homogenizer, bead mills
	 Add 6 Beads Z1 and 3 Beads Z2
	 Add 600 µl of DTT supplemented Lysis Buffer LT (shake gently before use)
	Grind and homogenise the sample
	Transfer the sample into a 2.0 ml receiver tube
	 Proceed with step 2 "DNA elimination"

	Manual	sample grinding
1b	•	Grinding of the starting material by using a pestle and liquid nitrogen
	•	Transfer the resulting powder in a 2.0 ml receiver tube
		Note : do <u>not thaw</u> the sample
	•	Add 600 μl of DTT supplemented Lysis Buffer LT (shake gently before use)
	•	Incubate under continuous shaking at room temperature until having a homogeneous lysate

Note: passing the lysate through a gauge 20 needle improves the RNA extraction yield. (Shearing occurs and DNA breaks down).

Steps 2 to 6 \rightarrow

LANEXXO SARL

2	DNA el where r	imination (and beads removal necessary)
Ζ	•	Centrifuge 2 min. at max. speed
	•	Transfer carefully approx. 500 µl of the supernatant into a new 2.0 ml collection tube (not supplied)
	•	Add 330 µl of >96 % ethanol into the new 2.0 ml collection tube
	•	Mix entirely by pipetting

	RNA ac	Isorption to the RNA Filter
3	•	Transfer the whole solution from the collection tube of the previous step into the center of the RNA Filter from a RNA Filter Set (filter inserted in a tube)
	•	Incubate 1 min. at room temperature
	•	Centrifuge 2 min. at 11000 x g
	•	Discard the flow-through and put the RNA Filter back into the tube

	RNA washing, step I	
4	•	Add 600 μl of Wash Solution M1 to the RNA Filter
	•	Centrifuge 1 min. at 11000 x g
	•	Discard the flow-through <u>and the</u> <u>Receiver tube</u>
	•	Insert the RNA Filter into a <u>new</u> Receiver Tube GS

RNA washing, step II

5

6

- Add 700 µl of Wash Solution M2 to the RNA Filter
 - Centrifuge 1 min. at 11000 x g
 - Discard the flow-through and put the RNA Filter back into the Receiver Tube GS
 - Repeat 1 X the washingcentrifugation step
 - Discard the flow-through and put the **RNA Filter** back into the **Receiver Tube GS**
 - Centrifuge 4 min. at max. speed, to remove remaining ethanol

Elution of total RNA

- Insert the **RNA Filter** into a RNase-free **Elution Tube**
 - Add 30 60 µl of **Elution Buffer KL** (depending on desired yield and concentration)
 - Incubate 2 min. at room temperature
 - Centrifuge 1 min. at 11000 x g
 - Discard the RNA Filter and place immediately the Elution Tube with eluted RNA on ice

Eluted RNA is ready for down-stream applications and can directly be used for Northern blots, dot blots, RT-PCR, DDRT-PCR, construction of cDNA libraries, etc., or can be stored at -80 °C for several weeks.

VII. Protocol 4: RNA extraction from formalin-fixed, paraffin-embedded tissues (FFPE)

Before starting

 Ensure that reagents/buffers preparation has been done (see chapter "Reagents and buffer solutions preparation", page 2).

Note: always use RNase-free consumables.

- Prepare in due time octane or xylene (not supplied).
- Prepare in due time the proteinase K (40 mg/ml) (not supplied).
- Prepare in due time 1 mM DTT (not supplied).
- Prepare in due time the RNase-free TE buffer (not supplied).
- The last step needs to place the elution tube in ice. Prepare the ice in due time.

Note: To prevent contamination, use new pipet tip for each pipetting step.

 Supplement the required amount of Lysis Buffer LT with 1M DTT at 1 % of final volume. (see step 1a or 1b of protocol 3, page 10)

e.g. : <u>693 µl</u> **Lysis Buffer LT** + <u>7 µl</u> DTT 1M = <u>700 µl_ **Lysis Buffer LT** supplemented with DTT</u>

> Note: the mix Lysis buffer + DTT is instable over time, only prepare the required amounts for the protocol.

> Note: **Lysis Buffer LT** contents DNA binding particles. Shake <u>gently before use</u>, to re-suspend the particles. Wait until foam disappearance.

	Deparaffinization	
1	• Transfer the sample into a 1.5 ml reaction tube (not supplied)	
	Add 0.5 ml octane or xylene	
	 Vortex gently until paraffin is dissolved 	
	Centrifuge 2 min. at max. speed	
	 Remove delicately the supernatant (retain only the pellet) 	
	Note: if it remains some paraffin, centrifuge again 2 min. at max. speed and remove delicately the supernatant.	
	• Wash the pellet with >96 % ethanol, then dry it	
	Centrifuge briefly	
	Remove ethanol with a pipette	

Incubate the open tube at 52 °C to remove the remaining ethanol

Preliminary cell lysis

2

Add 10 µl of proteinase K (40 mg/ml), 90 µl of RNase-free TE buffer and DTT at final concentration 10 mM (approx. 1µl of 1M DTT)

Note: mechanical grinding is recommended before or during the lysis.

- Mix entirely by pipetting
- Incubate 10 min. at 48 °C
- Incubate 10 min. under continuous shaking at 80 °C

Proceed with step 1 of protocol 3 "RNA extraction from up to 20 mg tissue" (page 10), with the whole sample.

VIII. Protocol 5: RNA isolation from up to 20 mg lung, kidney or spleen

Before starting

- Ensure that reagents/buffers preparation has been done (see chapter "Reagents and buffer solutions preparation", page 2).
- The last step needs to place the elution tube in ice. Prepare the ice in due time.

Note: always use RNase-free consumables.

Note: 1M DTT can be replaced by 1M β -mercaptoethanol.

• Supplement the required amount of Lysis Buffer LT with 1M DTT at 1 % of final volume. (see step 1a or 1b)

e.g. : <u>693 µl</u> **Lysis Buffer LT** + <u>7 µl</u> DTT 1M = <u>700 µl</u> **Lysis Buffer LT** supplemented with DTT

> Note: the mix Lysis buffer + DTT is instable over time, only prepare the required amounts for the protocol.

> Note: **Lysis Buffer LT** contents DNA binding particles. Shake <u>gently before use</u>, to re-suspend the particles. Wait until foam disappearance.

Note: To prevent contamination, use new pipet tip for each pipetting step.

Depending on sample characteristics, manual (1a) <u>or</u> automated (1b) grinding approach is more appropriated

	Automated sample grinding	
1a	• Transfer the sample in a suitable container (not supplied) adapted for grinding with a vortex, homogenizer, bead mills	11
	 Add 6 Beads Z1 and 3 Beads Z2 	
	 Add 900 µl of DTT supplemented Lysis Buffer LT (shake gently before use) 	
	Grind and homogenise the sample	
	Transfer the sample into a 2.0 ml receiver tube	
	 Proceed with step 2 "DNA elimination" 	
		N/-+-

	Manual sample grinding
1b	 Grinding of the starting material by using a pestle and liquid nitrogen
	• Transfer the resulting powder in a 2.0 ml receiver tube
	Note : do <u>not thaw</u> the sample
	 Add 900 µl of DTT supplemented Lysis Buffer LT (shake gently before use)
	 Incubate under continuous shaking at room temperature until having a homogeneous lysate

Note: passing the lysate through a gauge 20 needle improves the RNA extraction yield. (Shearing occurs and DNA breaks down)

Steps 2 to 6 \rightarrow

LANEXXO SARL

2	DNA elimination (and beads removal where necessary)		
	•	Centrifuge 2 min. at max. speed	
	•	Transfer carefully approx. 800 µl of the supernatant into a new 2.0 ml collection tube (not supplied)	
	•	Add 500 µl of >96 % ethanol into the new 2.0 ml collection tube	
	•	Mix entirely by pipetting	

	RNA adsorption to the RNA Filter
3	 Transfer 750 µl of the solution from the previous step into the center of the RNA Filter from a RNA Filter Set (filter inserted in a tube)
	 Incubate 1 min. at room temperature
	• Centrifuge 2 min. at 11000 x g
	 Discard the flow-through and put the RNA Filter back into the tube

	RNA washing, step I			
4	•	Add 600 µl of Wash Solution M1 to the RNA Filter		
	•	Centrifuge 1 min. at 11000 x g		
	•	Discard the flow-through <u>and the</u> <u>Receiver tube</u>		
	•	Insert the RNA Filter into a <u>new</u> Receiver Tube GS		

5

6

- Add 700 μl of Wash Solution M2 to the RNA Filter
 - Centrifuge 1 min. at 11000 x g
 - Discard the flow-through and put the RNA Filter back into the Receiver Tube GS
 - Repeat 1 X the washingcentrifugation step
 - Discard the flow-through and put the RNA Filter back into the Receiver Tube GS
 - Centrifuge 4 min. at max. speed, to remove remaining ethanol

Elution of total RNA

- Insert the RNA Filter into a
 RNase-free Elution Tube
 - Add 30 60 µl of Elution Buffer KL (depending on desired yield and concentration)
 - Incubate 2 min. at room temperature
 - Centrifuge 1 min. at 11000 x g
 - Discard the RNA Filter and place immediately the Elution Tube with eluted RNA on ice

Eluted RNA is ready for down-stream applications and can directly be used for Northern blots, dot blots, RT-PCR, DDRT-PCR, construction of cDNA libraries, etc., or can be stored at -80 °C for several weeks.

IX. Variant I: simultaneous extraction of total RNA and proteins

Proteins may be recovered from the flow-through of:

- Step 4 "RNA adsorption to the RNA Filter" of protocol 1. (page 5)
- Step 3 "RNA adsorption to the RNA Filter" of protocol 3. (page 11)

Protein precipitation

- Add 3 volume of ice cold acetone to the flow-through
 Vortex
 Centrifuge 10 min. at 4 °C, at 11000 x g
 - Discard the supernatant (do not remove the pellet)

Protein resuspension

3

 Resuspend the pellet/ the proteins in an appropriate buffer solution suitable for further applications

(e.g.: Laemmli buffer then heat 5 min. at 99 °C.)

	Protein washing		
2	 Add 500 µl of cold >96 % ethanol 		
	 Centrifuge 4 min. at 4 °C, at max. speed 		
	 Discard the supernatant (do not remove the pellet) 		

Caution: <u>Never</u> do a trichloroacetic acid (TCA) precipitation (risk of gas intoxication!)

X. Variant II: simultaneous extraction of total RNA and DNA in protocol 1

• DNA may be recovered from the DNA Filter of step 3 "DNA elimination" of protocol 1. (page 5)

3

	DNA washing, step I				
1	•	Insert the DNA Filter in a new 2.0 ml receiver tube (not supplied)			
	•	Add 600 µl of Wash Solution M1 to the DNA Filter			
	•	Centrifuge 1 min. at 11000 x g			
	•	Discard the flow-through <u>and the</u> <u>Receiver tube</u>			
		Incort the DNA Filter into a new			

• Insert the **DNA Filter** into a <u>new</u> receiver tube

	DNA washing, step II		
2	 Add 700 µl of Wash Solution M2 to the DNA Filter 		
	Centrifuge 1 min. at 11000 x g		
	 Discard the flow-through and put the DNA Filter back into the receiver tube 		
	Repeat 1 X the washing- centrifugation step		
	 Discard the flow-through and put the DNA Filter back into the receiver tube 		
	Centrifuge 4 min. at max. speed, to remove remaining ethanol		

Elution of genomic DNA

- Insert the **DNA Filter** into a 1.5 ml elution tube
 - Add 40 100 µl of Elution Buffer KL (depending on desired yield and concentration)
 - Incubate 2 min. at room temperature
 - Centrifuge 1 min. at 11000 x g
 - Discard the **DNA Filter** and place the elution tube with eluted DNA at 4 °C

Note: DNA elution can also be achieved with ddH_2O .

Note: this protocol requires a larger amount of tubes and solutions. Using this protocol reduce the total number of RNA extractions.

XI. Variant III: RNA purification from aqueous phase of Trizol

	DNA elimination			RNA washing, step I
1	 In a 2.0 ml reaction tube, add to up to 350 µl of Trizol aqueous phase an equal amount of DTT supplemented Lysis Buffer LT (shake gently before use) Mix entirely by pipetting Incubate 1 min. at room temperature 	3		 Add 600 µl of Wash Solution M1 to the RNA Filter Centrifuge 1 min. at 11000 x g Discard the flow-through and the <u>Receiver tube</u> Insert the RNA Filter into a <u>new</u> Receiver Tube GS
	• Centrifuge 2 min. at 11000 x g			
	 Transfer the supernatant into a new 2.0 ml receiver tube 	Γ		RNA washing, step II
			4	 Add 700 µl of Wash Solution M2 to the RNA Filter
	RNA adsorption to the RNA Filter			• Centrifuge 1 min. at 11000 x g
2	 Add 1 volume of >96 % ethanol to the supernatant from previous step 			 Discard the flow-through and put the RNA Filter back into the Receiver Tube GS
	Mix entirely by pipetting			 Repeat 1 X the washing- centrifugation step
	 Transfer the mixture into the center of the RNA Filter from a RNA Filter Set (filter inserted in a tube) 			 Discard the flow-through and put the RNA Filter back into the Receiver Tube GS
	 Incubate 1 min. at room temperature 			 Centrifuge 4 min. at max. speed, to remove remaining ethanol
	• Centrifuge 1 min. at 11000 x g			
	Discard the flow-through and put the RNA Filter back into the	Γ		Elution of total RNA
	Note: if the supernatant + ethanol volume exceeds 700 µl, operate in successive centrifugation steps by using the same RNA Filter.		5	 Insert the RNA Filter into a RNase-free Elution Tube Add 40 – 100 µl of Elution Buffer KL (depending on desired yield and concentration) Incubate 2 min. at room temperature
				temperature

- Centrifuge 1 min. at 11000 x g
- Discard the RNA Filter and place immediately the Elution Tube with eluted RNA on ice

Eluted RNA is ready for down-stream applications and can directly be used for Northern blots, dot blots, RT-PCR, DDRT-PCR, construction of cDNA libraries, etc., or can be stored at -80 °C for several weeks.

XII. Variant IV: RNA isolation from liquids

Depending on sample characteristics (contaminated or not contaminated by DNA), start with step 1a <u>or</u> 1b

1a	Sample preparation (sample not contaminated by DNA)	1b	1h	Sample preparation (sample contaminated by DNA)
	 Transfer the required amount(*) of DTT supplemented Lysis Buffer LT (shake gently before use) into an empty DNA Filter (filter inserted in a tube) 			Add the required amount(*) of DTT supplemented Lysis Buffer LT (shake gently before use) to the sample (*) for samples with a volume of 100 ult
	(*) for samples with a volume of 100 µl: 350 µl of DTT supplemented Lysis Buffer LT . for samples with a volume of 200 µl:			 () for samples with a volume of 100 μl: 350 μl of DTT supplemented Lysis Buffer LT. for samples with a volume of 200 μl: 700 μl of DTT supplemented Lysis Buffer
	700 μl of DTT supplemented Lysis Buffer LT.			Mix thoroughly by pipetting
	 Centrifuge 2 min. at 13400 x g Discard the DNA Filter Add the sample (100 µl or 200 µl, as the case may be) to the tube containing the flow-through 			 Transfer the entire mixture (including possible precipitates) into a DNA Filter (filter inserted in a tube) Incubate 1 min. at room
	 Proceed with step 2 "RNA adsorption to the RNA Filter" 			• Centrifuge 2 min. at 11000 x g Note: if the volume of the mixture exceeds 700 µl, operate in successive
				centrifugation steps, by using the same DNA Filter.

• Discard the DNA Filter

Steps 2 to 5 \rightarrow

	RNA adsorption to the RNA Filter				
2	 Add the required amount(*) of ethanol >96 % to the receiver tube of the previous step 				
	 (*) for samples with a volume of 100 μl: 250 μl of >96 % ethanol. for samples with a volume of 200 μl: 500 μl of >96 % ethanol. 				
	Mix thoroughly by pipetting				
	 Transfer the entire mixture into a RNA Filter (filter inserted in a tube) 				
	 Incubate 1 min. at room temperature 				
	• Centrifuge 2 min. at 11000 x g				
	 Discard the flow-through and put the RNA Filter back into the receiver tube 				
	Note: if the mixture volume exceeds 700 µl, operate in successive centrifugation steps by using the same RNA Filter.				
	RNA washing, step I				

3	•	Add 600 µl of Wash Solution M1 to the RNA Filter
	•	Centrifuge 1 min. at 11000 x g

- Discard the flow-through <u>and the</u>
 <u>Receiver tube</u>
- Insert the RNA Filter into a <u>new</u>
 Receiver Tube GS

Elution of total RNA

5

- Insert the **RNA Filter** into a RNase-free **Elution Tube**
- Add 40 100 µl of Elution Buffer KL (depending on desired yield and concentration)
- Incubate 2 min. at room temperature
- Centrifuge 1 min. at 11000 x g
- Discard the RNA Filter and place immediately the Elution Tube with eluted RNA on ice

Eluted RNA is ready for down-stream applications and can directly be used for Northern blots, dot blots, RT-PCR, DDRT-PCR, construction of cDNA libraries, etc., or can be stored at -80 °C for several weeks.